Java 函数式接口
发布时间:
更新时间:
🕒 阅读时间:11 min read
👀 阅读量:Loading...
Supplier接口
java.util.function.Supplier<T> 接口仅包含一个无参的方法T get(),☞为获取一个泛型参数指定类型的对象数据,对应的Labmda表达式需要对外提供一个符合泛型类型的对象数据
package java.util.function;
/** * Represents a supplier of results. * * <p>There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #get()}. * * @param <T> the type of results supplied by this supplier * * @since 1.8 */@FunctionalInterfacepublic interface Supplier<T> {
/** * Gets a result. * * @return a result */ T get();}示例
/* java.util.function.Supplier<T>接口仅包含一个无参的方法:T get()。用来获取一个泛型参数指定类型的对象数据。
Supplier<T>接口被称之为生产型接口,指定接口的泛型是什么类型,那么接口中的get方法就会生产什么类型的数据 */public class test { //定义一个方法,方法的参数传递Supplier<T>接口,泛型执行String,get方法就会返回一个String public static String getString(Supplier<String> sup){ return sup.get(); // 不要被sup.get()所迷惑,你试试return "hello world",也是可以的,不过我们要想拿到生产型接口的返回值,自然而然就是sup.get()了, }
public static void main(String[] args) { //调用getString方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式 String s = getString(()->{ // 生成一个字符串并返回 return "hello world"; }); System.out.println(s);
//优化Lambda表达式 String s2 = getString(()->"I love china"); System.out.println(s2); }}Consumer 接口
java.util.function.Consumer<T> 接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据, 其数据类型由泛型决定。
package java.util.function;
import java.util.Objects;
/** * Represents an operation that accepts a single input argument and returns no * result. Unlike most other functional interfaces, {@code Consumer} is expected * to operate via side-effects. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #accept(Object)}. * * @param <T> the type of the input to the operation * * @since 1.8 */@FunctionalInterfacepublic interface Consumer<T> {
/** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t);
/** * Returns a composed {@code Consumer} that performs, in sequence, this * operation followed by the {@code after} operation. If performing either * operation throws an exception, it is relayed to the caller of the * composed operation. If performing this operation throws an exception, * the {@code after} operation will not be performed. * * @param after the operation to perform after this operation * @return a composed {@code Consumer} that performs in sequence this * operation followed by the {@code after} operation * @throws NullPointerException if {@code after} is null */ default Consumer<T> andThen(Consumer<? super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; }}示例
import java.util.function.Consumer;class test { /* 定义一个方法 方法的参数传递一个字符串的姓名 方法的参数传递Consumer接口,泛型使用String 可以使用Consumer接口消费字符串的姓名 */ public static void method(String name, Consumer<String> con){ con.accept(name); }
public static void main(String[] args) { //调用method方法,传递字符串,方法的另一个参数是Consumer接口,是一个函数式接口,所以可以传递Lambda表达式 method("I love china",(String s)->{ //对传递的字符串进行消费 //消费方式:直接输出字符串 //System.out.println(name); //消费方式:把字符串转换为大写 String str = s.toUpperCase(); System.out.println(str); }); }}Predicate接口
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用 java.util.function.Predicate<T> 接口。
package java.util.function;
import java.util.Objects;
/** * Represents a predicate (boolean-valued function) of one argument. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #test(Object)}. * * @param <T> the type of the input to the predicate * * @since 1.8 */@FunctionalInterfacepublic interface Predicate<T> {
/** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t);
/** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); }
/** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate<T> negate() { return (t) -> !test(t); }
/** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> or(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); }
/** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param <T> the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static <T> Predicate<T> isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); }}示例
import java.util.function.Predicate;/* java.util.function.Predicate<T>接口 作用:对某种数据类型的数据进行判断,结果返回一个boolean值
Predicate接口中包含一个抽象方法: boolean test(T t):用来对指定数据类型数据进行判断的方法 结果: 符合条件,返回true 不符合条件,返回false*/public class test { /* 定义一个方法 参数传递一个String类型的字符串 传递一个Predicate接口,泛型使用String 使用Predicate中的方法test对字符串进行判断,并把判断的结果返回 */ public static boolean checkString(String s, Predicate<String> pre){ return pre.test(s); }
public static void main(String[] args) { String s = "hello"; boolean b = checkString(s,str->str.length()>5); System.out.println(b); }}Function接口
java.util.function.Function<T,R> 接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件, 后者称为后置条件
package java.util.function;
import java.util.Objects;
/** * Represents a function that accepts one argument and produces a result. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #apply(Object)}. * * @param <T> the type of the input to the function * @param <R> the type of the result of the function * * @since 1.8 */@FunctionalInterfacepublic interface Function<T, R> {
/** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t);
/** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default <V> Function<V, R> compose(Function<? super V, ? extends T> before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); }
/** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); }
/** * Returns a function that always returns its input argument. * * @param <T> the type of the input and output objects to the function * @return a function that always returns its input argument */ static <T> Function<T, T> identity() { return t -> t; }}示例
import java.util.function.Function;/* java.util.function.Function<T,R>接口用来根据一个类型的数据得到另一个类型的数据, 前者称为前置条件,后者称为后置条件。 Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。 使用的场景例如:将String类型转换为Integer类型。 */public class test { /* 定义一个方法 方法的参数传递一个字符串类型的整数 方法的参数传递一个Function接口,泛型使用<String,Integer> 使用Function接口中的方法apply,把字符串类型的整数,转换为Integer类型的整数 */ public static void change(String s, Function<String,Integer> fun){ //Integer in = fun.apply(s); int in = fun.apply(s);//自动拆箱 Integer->int System.out.println(in); }
public static void main(String[] args) { //定义一个字符串类型的整数 String s = "1234"; //调用change方法,传递字符串类型的整数,和Lambda表达式 change(s,(String str)->{ //把字符串类型的整数,转换为Integer类型的整数返回 return Integer.parseInt(str); }); //优化Lambda change(s,str->Integer.parseInt(str)); }}
留言评论